Aerobic growth at nanomolar oxygen concentrations.
نویسندگان
چکیده
Molecular oxygen (O(2)) is the second most abundant gas in the Earth's atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the "Great Oxidation" of the Earth's surface about 2.3 to 2.4 billion years ago. Here, we show that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history of aerobic organisms.
منابع مشابه
Membrane lipid changes during formation of a functional electron transport system in Staphylococcus aureus.
Addition of oxygen to a culture of anaerobically growing Staphylococcus aureus results in the formation of a membrane-bound, functional electron transport system. With the shift to aerobic growth, there is at least a 15-fold increase in cytochrome a and at least a 55-fold increase in cytochrome oxidase o. At the completion of the shift to aerobic growth, the cytochrome levels equal those found ...
متن کاملA theoretical basis for a nanomolar critical oxygen concentration
When aerobic microbes deplete oxygen sufficiently, anaerobic metabolisms activate, driving losses of fixed nitrogen from marine oxygen minimum zones. Biogeochemical models commonly prescribe a 1–10 lM critical oxygen concentration for this transition, a range consistent with previous empirical and recent theoretical work. However, the recently developed STOX sensor has revealed large regions wi...
متن کاملα-Tocopherol at Nanomolar Concentration Protects Cortical Neurons against Oxidative Stress
The aim of the present work is to study the mechanism of the α-tocopherol (α-T) protective action at nanomolar and micromolar concentrations against H₂O₂-induced brain cortical neuron death. The mechanism of α-T action on neurons at its nanomolar concentrations characteristic for brain extracellular space has not been practically studied yet. Preincubation with nanomolar and micromolar α-T for ...
متن کاملSimultaneous COD, nitrogen, and phosphate removal by aerobic granular sludge.
Aerobic granular sludge technology offers a possibility to design compact wastewater treatment plants based on simultaneous chemical oxygen demand (COD), nitrogen and phosphate removal in one sequencing batch reactor. In earlier studies, it was shown that aerobic granules, cultivated with an aerobic pulse-feeding pattern, were not stable at low dissolved oxygen concentrations. Selection for slo...
متن کاملImpacts of Nitrate and Nitrite on Physiology of Shewanella oneidensis
Shewanella oneidensis exhibits a remarkable versatility in anaerobic respiration, which largely relies on its diverse respiratory pathways. Some of these are expressed in response to the existence of their corresponding electron acceptors (EAs) under aerobic conditions. However, little is known about respiration and the impact of non-oxygen EAs on the physiology of the microorganism when oxygen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 107 44 شماره
صفحات -
تاریخ انتشار 2010